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Abstract
Consider the problem of scheduling a set of tasks of length p without preemption on m identical machines
with given release and deadline times. We present a new algorithm for computing the schedule with
minimal completion times and makespan. The algorithm has time complexity O(min(1, p

m )n2) which
improves substantially over the best known algorithm with complexity O(mn2).
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1 Introduction

We consider the problem of scheduling a set of equal length tasks without preemption on m identical
machines with given release and deadline times. The goal is to produce a schedule, if one exists, that
minimizes the sum of the completion times. We later prove that this simultaneously minimizes the
makespan. This scheduling problem is known as Pm|rj ; pj = p;Dj |

∑
Cj in the notation used by

Pinedo [8].
The scheduling problem we study is formally defined as follows. There are n jobs labeled from 1

to n with integer release times ri and latest starting times ui such that ri < ui for i ∈ 1..n. A job can
start on or after time ri but must start strickly before time ui. Each job has an integer processing time
p and needs to be allocated on one of the m identical machines. Jobs are not allowed to be preempted
and only one job at a time can be executed on a machine. The deadline of job i is therefore given by
ui + p − 1. We therefore need to find for each job i a starting time si such that ri ≤ si < ui and
that for any time t, no more than m jobs are being executed. Moreover, we would like to minimize
the total completion time, i.e. the sum of the completion time of each job. Formally, we have the
following system to solve.

min
n∑

i=1

si (1)

ri ≤ si < ui ∀i ∈ 1..n (2)

|{i | t ≤ si < t + p}| ≤ m ∀t (3)

Simons [9] proposed the first polynomial time algorithm running in O(n3 log log n) for solving
this problem. Simons and Warmuth [10] further improved this bound to O(mn2). Vakhania [11] pre-
sented an algorithm that runs in O(d2

max(m+ dmax)n log n) where dmax is the latest deadline. Note
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that in any feasible instance we have dmax ≥ p
⌈

n
m

⌉
. Vakhania’s algorithm is therefore competitive

when the processing time p is small and the number of machines is proportional to the number of
jobs. Dürr and Hurand [3] gave an algorithm that runs in O(n3). Even though their algorithm does
not improve over the best time complexity, it deepens the understanding of the problem by reducing
it to a shortest path in a graph. The algorithm presented in this paper is based on this reduction while
improving substantially its time complexity.

There exist specializations to the problem with more efficient algorithms. For instance, on a
single machine (m = 1) and with a unit processing time (p = 1), the problem consists of a matching
in a convex bipartite graph. Lipski and Preparata [7] designed an algorithm running in O(nα(n))
time where α is the inverse of Ackermann’s function and where it is assumed that the jobs are
presorted by deadlines. Gabow and Tarjan’s [4] showed how to reduce this complexity to O(n) using
their union-find data structure. The algorithm can be easily adapted without altering the complexity
for multiple machines even in the case where the number of machines fluctuates over time. Finally,
Garey et al. [5] solve the scheduling problem in O(n log n) time for jobs of equal processing times
on a single machine (m = 1).

2 Reduction to a Shortest Path

Suppose that an oracle provides the number xt of jobs starting at time t. A solution can be con-
structed using a matching in a convex bipartite graph. For each job j, we create a node j and for
each time t, we create xt duplicates of a node t. There is an edge between a job node j and a time
node t if rj ≤ t < uj . A matching in such a graph associates to each job a starting time. Since the
graph is convex, Lipski and Preparata [7] show how to find such a matching in O(nα(n)) time.

Thus we have reduced the scheduling problem to finding how many jobs start at any given time
t. We answer this question by computing a shortest path in a graph in a manner similar to what Dürr
and Hurand [3] did. Their solution consists of building a graph with O(n) nodes and O(n2) edges
and to compute the shortest path using the Bellman-Ford algorithm in O(n3) time. We propose a
similar approach with a graph having more nodes. These additional nodes make the computation
of a solution easier. However, the main contribution of our technique is presented in Section 3 to 5
where we identify and exploit the properties of the graph to obtain a substantially faster algorithm.

We know that at most m jobs can start in any window of size p. We can already state the
equations. Let rmin = mini ri and umax = maxi ui be the earliest release time and latest allowed
starting time.

t+p−1∑
j=t

xj ≤ m ∀ rmin ≤ t ≤ umax − p (4)

xt ≥ 0 ∀ rmin ≤ t < umax (5)

Condition 4 states that at most m processes may start on a given interval of length p. Let umax =
maxi ui be the latest time when a job can start. Given two (possibly identical) jobs i and j defining
a non-empty semi-open interval [ri, uj), the set {k | ri ≤ rk ∧ uk ≤ uj} denotes the jobs that must
start in this interval, hence

uj−1∑
t=ri

xt ≥ |{k | ri ≤ rk ∧ uk ≤ uj}| ∀ i, j ∈ 1..n (6)

I Lemma 1. The scheduling problem has a solution if and only if Equations (4) to (6) are satisfi-
able.
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Proof. (⇒) Given a valid schedule, we set xt to the number of jobs starting at time t, i.e xt = {i |
si = t}. By definition of the problem, all equations are satisfied.
(⇐) Consider a bipartite graph G = 〈J ∪ T,E〉 such that J = {1, . . . , n} are the nodes associated
to the jobs and T is a multiset of time points such that time t occurs xt times in T . There is an edge
from the job-node i to the time-node t if t ∈ [ri, ui]. Note that the bipartite graph is convex, i.e. if
there is an edge (i, t1) and an edge (i, t3) then there is an edge (i, t2) for all t2 ∈ [t1, t3] ∩ T . A
maximum matching in this convex bipartite graph gives a valid assignment of jobs to time points.
Equation (4) ensures that no machines are overloaded and the schedule is feasible. From Hall’s [6]
marriage theorem, there exists a matching if and only if for any set of jobs S, there are at least
|S| time nodes that are adjacent to the nodes in S. Let i ∈ S be the job with the earliest release
time and j ∈ S be the job with the latest deadline. Inequality (6) ensures that there are at least
|{k | ri ≤ rk ∧ uk ≤ uj}| ≥ |S| time-nodes adjacent to the nodes in S which meets Hall’s
condidtion. J

We perform a change of variables to simplify the form of the equations. Let yt =
∑t−1

i=rmin
xi

for rmin ≤ t ≤ umax. Equations (4) to (6) are rewritten as follows.

yt+p − yt ≤ m ∀ rmin ≤ t ≤ umax − p (7)

yt − yt+1 ≤ 0 ∀ rmin ≤ t < umax (8)

yri
− yuj

≤ −|{k | ri ≤ rk ∧ uk ≤ uj}| ∀ ri < uj (9)

Equations (7) to (9) form a system of difference constraints, which can be solved creating a graph
with one node per variable and an edge (a, b) of weight w for each constraint b − a ≤ w. For the
equations above, we obtain a graph G = 〈T,E〉 where T = rmin..umax is the set of nodes, one for
each integer time point. We consider three sets of edges: forward edges Ef = {(t, t + p) | rmin ≤
t ≤ umax−p}, backward edges Eb = {(uj , ri) | ri < uj}, and null edges En = {(t+1, t) | rmin ≤
t < umax}. The edges of the graph are the union of these three sets of edges E = Ef ∪ En ∪ Eb

that are directly derived from Equations (7), (8), and (9). The following weight function maps every
edge to an integer weight. Let (a, b) ∈ E, then

w(a, b) =
{

m if a < b

−|{k | b ≤ rk ∧ uk ≤ a}| otherwise
(10)

We call the graph G the scheduling graph. The following theorem shows the connexion between
a shortest path in the scheduling graph and a solution to the system of difference constraints. The
proof is taken from Cormen et al. [2] who credit it to R. Bellman.

I Theorem 2. Let δ(a, b) be the shortest distance between node a and node b in the scheduling
graph. The assignment yt = n + δ(umax, t) is a solution to Equations (7) to (9).

Proof. Suppose there is an inequality yb − ya ≤ w(a, b) that is not satisfied by the assignment, we
therefore have n+δ(umax, b)−n−δ(umax, a) > w(a, b). The inequality δ(umax, b) > δ(umax, a)+
w(a, b) contradicts that δ(umax, b) is the shortest distance from umax to b. J

Let |T | ∈ O(umax − rmin) be the number of nodes and |E| ∈ O(n2 + umax − rmin) the
number of edges in the scheduling graph. Here we could directly apply a shortest path algorithm
such as Bellman-Ford to compute a shortest path from umax to all other nodes in the graph. These
algorithms run in time polynomial in T and |E|, or in other words, pseudo-polynomial on the term
umax. In the next section we show properties of the scheduling graph and use them to propose a
much more efficient method based on a speed up version of Bellman- Ford’s algorithm.

Figure 1 presents a scheduling graph with 2 machines, 5 jobs, and a processing time of 3.
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Figure 1 A scheduling graph with 9 nodes. The weight on an edge between two nodes appear at the
intersection of the two diagonals passing by these nodes. The weights of the null and backward edges appear
bellow the nodes while the weights of the forward edges appear above the nodes. Empty cells indicate the
absence of an edge. For instance, the weight of backward edge (9, 2) is -4. The shortest path between node 9
and 6 passes by the nodes 9, 1, 4, 7, 2, 5, 3, 6.

3 Properties of the Scheduling Graph

I Lemma 3. Let e < f < g < h be four nodes in a scheduling graph without negative cycles. If
the edges (h, f) and (g, e) lie on a shortest path then there exists an equivalent path of same length
that does not include these edges.

Proof. Suppose that the edges (h, f) and (g, e) lie on a same shortest path and that (h, f) precedes
(g, e) on this path. Since any sub-path of a shortest path is also a shortest path, we have

w(h, e) ≥ w(h, f) + δ(f, g) + w(g, e) (11)

Recalling that −w(y, x) for x < y is the number of jobs that must start in the time interval [x, y),
we know that the following relationship holds on backward edges.

w(h, e) ≤ w(g, e) + w(h, f)− w(g, f) (12)

Subtracting (12) from (11) shows that the cycle passing by (f, g) is negative or null and since there
are no negative cycles, we obtain the equality 0 = w(g, f) + δ(f, g) Substituting this equality back
in (12) shows an equality in (11). The edge (h, e) is therefore an equivalent path that does not contain
the edges (h, f) nor (g, e).

Alternatively, suppose that (h, f) succeeds to (g, e) on the path. We have

w(g, f) ≥ w(g, e) + δ(e, h) + w(h, f) (13)

Adding (12) to (13) gives 0 ≥ w(h, e)+ δ(e, h). Since there are no negative cycles in the scheduling
graph, the inequality is tight. Substituting the equality into (12) shows that (13) is tight and that
(g, f) is an equivalent shortest path. J

A backward edge (b, a) is associated to the interval [a, b). If two backward edges have disjoint
intervals, we say that the backward edges are disjoint. If the interval of one backward edge is
contained in the interval of another backward edge, we say that the backward edges are nested.
Otherwise, we say that the backward edges are crossed.
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I Lemma 4. The shortest path which also minimizes the number of edges does not have crossed
backward edges.

Proof. By applying Lemma 3 on a shortest path, one obtains a shortest path with two crossed edges
and one forward edge replaced by one backward edge. One can repeat the process until there are no
more crossed edges in the path. Since each time we apply Lemma 3, the number of edges in the path
diminishes, the process is guaranteed to finish. J

Let d be the distance vector such that d[t] = δ(umax, t) is the shortest distance from node umax

to node t. The vector d is monotonically increasing.

I Lemma 5. The distance vector d is monotonically increasing.

Proof. Consider the nodes t and t+1, the null edges En guarantees that d[t] ≤ d[t+1]+w(t+1, t)
or simply d[t] ≤ d[t + 1]. J

I Lemma 6. If the scheduling graph has no negative cycles, d[rmin] = −n.

Proof. Lemma 4 implies that there is a shortest path from umax to rmin that do not have forward
edges. Because two consecutive backward edges are no shorter than one longer backward edge
(w(c, a) ≤ w(c, b) + w(b, a) for any time point a < b < c) we conclude that the edge (umax, rmin)
is a single-segment shortest path from umax to rmin with distance −n. J

Lemma 5 and Lemma 6 implies that the distance vector d contains the values −n..0 in non-
decreasing order. Keeping a structure in memory of the n time points where the vector d is strictly
increasing is sufficient to retrieve all components of vector d. This is a first step towards a strongly
polynomial algorithm.

4 The Algorithm

We present an algorithm based on the Bellman-Ford algorithm [1] for the single-source shortest path
problem. We encode the distance vector with a vector d−1 of dimension n+1. The component d−1[i]
is the rightmost node reachable at distance at most−i. For example, if n = 10 and d−1[3] = 4, there
is a path from umax to 4 of weight at most −3.

An iteration of the Bellman-Ford algorithm applies the relaxation d[b] ← min(a,b)∈E d[a] +
w(a, b) for all nodes b and assumes that there is an edge (b, b) of null weight on all nodes. After
sufficiently many iterations. the algorithm converges to a distance vector d such that d[a] is the
shortest distance between the source node and the node a.

We develop two procedures. One that applies the relaxation to the edges in En∪Ef and one that
applies it to the edges in En ∪ Eb. Yen [12] introduced the technique of partitioning edges between
forward and backward edges to reduce the number of iterations of the Bellman-Ford algorithm to
the number of times a shortest path alternates between a backward edge to a forward edge. In a
scheduling graph, the number of alternations can be reduced to min(n,

⌈
n
m

⌉
p) as we will prove in

Section 5. The algorithm for finding the starting times adapts the Bellman-Ford algorithm to the
scheduling graph. If the distance vector of the algorithm does not converge after a sufficient number
of iterations there exists a negative cycle in the graph proving that the problem is unsolvable. The
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algorithm then returns an error message.

Algorithm 1: FindStartingTimes(~r, ~u,m, p)
B ← sort({ri | i ∈ 1..n} ∪ {ui | i ∈ 1..n});
for i = 1 to n do li ← index(B, ri);
for i = 1 to n do vi ← index(B, ui);
d0 ← [umax, rmin, . . . , rmin︸ ︷︷ ︸

n copies

];

for k ← 1 to min(n,
⌈

n
m

⌉
p) + 1 do

~dk ← RelaxForwardEdges( ~dk−1,m, p);
~dk ← RelaxBackwardEdges( ~dk,~l, ~v, B);
if ~dk = ~dk−1 then return [dk[n− 1], dk[n− 2], . . . , dk[0]];

return Failure;

Relaxing the Forward Edges.

Relaxing forward edges is done in O(n) time by iterating over the distance vector d−1. It ensures
that if there is a path of distance i that goes to node x, then there is a path of distance i + m that
reaches node x + p. For all possible distances i spanning from −n to −m, we apply the relaxation
d−1[−i−m]← max(d−1[−i] + p, d−1[−i−m]).

Algorithm 2: RelaxForwardEdges(~d, m, p)

for i← −n to −m do
d[−i−m]← max(d[−i] + p, d[−i−m]);

return ~d;

Relaxing the Backward Edges.

Processing backward edges in O(n) time is more complex. Assume that jobs are sorted in non-
decreasing order of release times (ri ≤ ri+1). The algorithm is based on the similarity between the
backward edges incoming to node ri and backward edges incoming to node ri+1.

I Lemma 7. Let Ji be the set of jobs sharing the same release time as ri. The backward edges
incoming to ri and ri+1 are linked by the relation w(t, ri) = w(t, ri+1)− |{k ∈ Ji | uk ≤ t}|.

Proof. Recall that w(a, b) is the negation of the number of jobs that must start in the interval (b, a).
The number of jobs that must start in the time interval [ri, t) is the number of jobs that must start in
the interval [ri+1, t) plus the number of jobs that can start in [ri, ri+1) but must start before t. Hence
−w(t, ri) = −w(t, ri+1) + |{k ∈ Ji|uk ≤ t}| as claimed. J

Let d[uj ] be the best distance found so far by the Bellman-Ford algorithm from node umax to
node uj . Relaxing the backward edges consists of computing the value minj d[uj ] + w(uj , ri) for
all ri. The following Lemma shows that not all edges need to be processed.

I Lemma 8. Given two latest starting times ua < ub, if d[ua]+w(ua, ri+1) ≥ d[ub]+w(ub, ri+1)
then d[ua] + w(ua, ri) ≥ d[ub] + w(ub, ri).

Proof. Using the set Ji as defined in Lemma 7, we have |{j ∈ Ji | uj ≤ ua}| ≤ |{j ∈ Ji | uj ≤
ub}|. From Lemma 7, we obtain w(ua, ri+1) − w(ua, ri) ≤ w(ub, ri+1) − w(ub, ri). Subtracting
this inequality from the hypothesis proves the Lemma. J
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Lemma 8 is fundamental to obtain a fast algorithm relaxing the backward edges. It says that
when processing the backward edges ingoing to ri+1, if the edge (ub, ri+1) is a better or equivalent
candidate for a shortest path than (ua, ri+1) then the edge (ub, ri) is also a better or equivalent
candidate than (ua, ri). By transitivity, any backward edge outgoing from ua and ingoing to a node
smaller than ri+1 can be ignored.

Let B be the set containing all the release times r1, . . . , rn and latest starting times u1, . . . , un.
This set contains no duplicates and its elements are labeled from b1 to b|B|.

We construct a singly linked-list that we call the list of representatives. The list initially contains
the elements of B in increasing order. Each element of the list is a representative of a set that
initially only contains itself. The representative is always the largest element of its set. Each set is
represented in the data structure by a node labeled by its representative that has a link to the previous
node b1 ← b2 ← · · · . The link between bj+1 and bj has weight d[bj+1] − d[bj ]. If the weight of a
link (bj+1, bj) is null, we merge the node bj and the node bj+1 together to form a larger set for which
bj+1 is the representative. The node bj disappears from the list of representatives since Lemma 8
ensures that bj+1 will always be a better candidate than bj .

On the running example of Figure 1, the vector ~d is initialized to ~d = [9, 1, 1, 1, 1, 1]. After
the forward edge relaxation stage, its value becomes ~d = [9, 7, 4, 4, 1, 1]. The representatives are
B = {1, 2, 3, 4, 5, 6, 7, 9} which gives the vector d = [−5,−3,−3,−3,−1,−1,−1, 0] that maps
each element in B to a distance. After merging the sets connected with a null link, we obtain the
following chain where representatives are highlighted in bold.

{1} 2←− {2, 3,4} 2←− {5, 6,7} 1←− {9} (14)

Initially, the data structure allows us to compute d[bj ] for any j. As we shall show in Lemma 9,
one only needs to visit the nodes from bj to b1 and sum up the weights on the links to obtain d[bj ]+n.
Subtracting n from the sum of the links gives d[bj ]. The data structure can be updated to compute
the values d[bj ] + w(bj , ri) for each backward edge (bj , ri) in the scheduling graph. We process
the tasks in non-increasing order of release time starting with rn. When processing task i, we first
look in the data structure for the representative of ui which we call bq. Assume that the node bq

points to bt, we decrement the weight of the link (bq, bt). If the weight of the link becomes null after
decrementing, we delete bt from the list of representatives and merge the set containing bt with the
set represented by bq. The element bq remains the representative of the merged set.

Continuing with the running example, processing job 5 decreases by one the weight on the link
between node 7 and node 4. Processing job 4 decreases once more the weight of this link and fix it
to zero. The data structure then looks as follows.

{1} 2←− {2, 3, 4, 5, 6,7} 1←− {9} (15)

I Lemma 9. After processing the last job with release time ri, the sum of the weights on the links
from the representative of uj to node b1 is equal to d[uj ] + w(uj , ri) + n.

Proof. Let bk be the representative of uj . Initially, the weights on the links of the data structure from
bk to b1 are equal to the telescopic sum

∑k−1
l=0 (d[bl+1]− d[bl]) which simplifies to d[bj ] − d[b1] =

d[bj ] + n. After processing the last job with release time ri, all jobs that must start at or after ri and
before bk have been processed. Each of these |{a | ri ≤ ra ∧ ua ≤ uj}| jobs decremented by one a
link on the path between bk and b1. Therefore, the sum of the links on a path between uj and b1 is
d[uj ] + w(uj , ri) + n. J

The Bellman-Ford algorithm requires to find the backward edge incoming into ri that minimizes
the value d′[bj ] + w(bj , ri) where bj can be ri. Lemma 10 shows how the data structure finds the
optimal edge.
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I Lemma 10. Let bj be the representative of ri after processing all jobs with release times greater
than or equal to ri. The backward edge (bj , ri) is the one minimizing the value d′[bj ] + w(bj , ri).

Proof. The backward edge (bj , ri) that minimizes d′[bj ]+w(bj , ri) also minimizes d′[bj ]+w(bj , ri)+
n. Lemma 9 guarantees that the later value is equal to the weights on the path from bj to b1. Since
all weights on the path are positive, the smallest representative that is greater than or equal to ri is
the one minimizing d′[bj ] + w(bj , ri). This representative is necessarily the representative of ri.

We prove that values that are not representatives are not optimal. If ub is the representative of
ua, then for some release time rc ≥ ri, the link from node rb to ra was decremented to zero. From
Lemma 9, we have d′[ua] + w(ua, rc) = d′[ub] + w(ub, rc). From Lemma 8 we conclude that
d′[ua] + w(ua, ri) ≥ d′[ub] + w(ub, ri). Therefore, the representative ub is as good or better than
the non-representative ua. J

The algorithm RelaxBackwardEdges uses the data structure discussed above to relax the back-
ward edges. The first for loop on line 1 converts the vector d to the vector d′. Recall that d[i] is the
largest node in the graph reachable at distance at most −i and d′[i] is the smallest distance found so
far to reach node B[i] where B is the sorted vector of release times ri and latest starting times ui.

The algorithm then initializes the data structure. Each node is a set in a union-find data structure
T whose representative is the largest element. The weight of the link pointing to a representative bi

is stored in c[i]. We store in k[i] the number of jobs j that have been processed so far and for which
the latest starting time uj is represented by bi. The for loop on line 2 processes each job in non-
increasing order of release time. The data structure is updated as explained above. Line 3 computes
the value d′[be] + w(be, ri) where be is the representative of ri. Note that k[e] is the number of
processed jobs with latest starting time smaller than or equal to be which is equal to −w(be, ri).

5 Analysis

The following lemmas show the correctness of the algorithm and give the conditions to bound its
time complexity.

I Lemma 11. There is a shortest path from umax to all other nodes with at most
⌈

n
m

⌉
disjoint

backward edges.

Proof. Suppose a shortest path has k disjoint edges (bi, ai) for 1 ≤ i ≤ k. We assume that these
backward edges are interleaved with forward edges since two backward edges connected with null
edges can be replaced by a single backward edge of cost equal or smaller than the sum of the weights
of the backward edges. Since the intervals [ai, bi) are disjoint, we have

∑k
i=1 w(bi, ai) ≥ −n. It is

safe to assume that the path has negative weight since a path of null weight can be entirely constituted
of null edges without any backward edges. The path has k − 1 sequences of forward edges whose
weights sum to at most n − 1. Each sequence of forward edges must be at least of weight m. To
maximize the number k, we assume that each sequence of forward edges has a single edge. We have
(k − 1)m ≤ n− 1 which implies k ≤

⌊
n−1
m

⌋
+ 1 =

⌈
n
m

⌉
. J

Lemma 12 gives an upper bound on the number of nested backward edges lying on a shortest
path. Lemma 13 gives an upper bound on the number of backward edges lying on a shortest path.

I Lemma 12. A shortest path can have at most p nested backward edges (bi, ai) such that ai <

ai+1 and bi > bi+1.

Proof. In such a path, there must be a sequence of forward edges that connects ai to bj for some i

and some j. This sequence of forward edges cannot pass by a node ak for k > i since each node is
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Algorithm 3: RelaxBackwardEdges(~d,~l, ~v,B, W )
Construct a vector d′ s.t. the distance between umax and B[i] is d′[i];
d′ ← [ ]; // Empty vector
j ← −n;
for b ∈ B in increasing order do1

while b > d[−j] do j ← j + 1;
append(d′, j);

T ← UnionFind(|B|) ; // |B| disjoint sets
k ← [0, . . . , 0]; // Create a null vector of dimension |B|
for i← 1 to |B| − 1 do

c[i]← d′[i + 1]− d′[i];
if c[i] = 0 then Union(T, i, i + 1);

for i ∈ [1, n] in non-increasing value of li do2

q ← FindMax(T, vi);
t← FindMax(T, F indMin(T, vi)− 1);
c[t]← c[t]− 1;
k[q]← k[q] + 1;
if c[t] = 0 then

Union(T, t, q);
k[q]← k[q] + k[t];

e← FindMax(T, li);
a← d′[e]− k[e];3

if a < d′[li] then
d′[li]← a;
d[−a]← B[li];

return ~d;

visited only once on a path. This implies that ai and ak are not congruent modulo p for every k > i.
Consequently, ai 6= aj mod p for all i 6= j. The maximum set of values satisfying this property
has cardinality p. J

I Lemma 13. There is a shortest path with at most min(n,
⌈

n
m

⌉
p) backward edges.

Proof. The number of backward edges on a path is bounded by n since there are at most n nodes
ri to which they lead to. Lemma 11 guarantees that there are at most

⌈
n
m

⌉
disjoint backward edges.

Each disjoint backward edge can have at most p nested backward edges. Therefore, there are at
most

⌈
n
m

⌉
p backward edges on a shortest path. The number of backward edges is bounded by the

smallest of both bounds. J

I Theorem 14. The algorithm for finding the starting times is correct.

Proof. The correctness of the forward and backward edge relaxation algorithms follows from the
discussions and Lemmas in the previous section. The correctness of algorithm for finding the starting
times follows from the Bellman-Ford algorithm. We however need to justify why min(n,

⌈
n
m

⌉
p)

iterations are sufficient. A path is necessarily an alternation of forward edges in Ef and backward or
null edges in Eb∪En. Yen [12] shows that the number of iterations can be bounded to the number of
alternations. An alternation between a forward edge, a sequence of null edges, and another forward
edge can be replaced by an equivalent path of two forward edges and a sequence of null edges (or
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a sequence of null edges followed by two forward edges). Consequently, we can assume that the
sequences of null edges occur before or after a backward edge. Lemma 13 gives an upper bound of
min(n,

⌈
n
m

⌉
p) on the number of backward edges which is also an upper bound on the number of

alternations. J

I Theorem 15. The algorithm for finding the starting times completes in O(min(1, p
m )n2) steps.

Proof. The running time complexity of the forward edge relaxation stage is clearly O(n). The
complexity of the backward edge relaxation stage depends on the implementation of the Union-Find
data structure. There are O(n) calls to the functions FindMin, FindMax, and Union. Using
path compression, each call can be executed in O(α(n)) time where α is the inverse of Ackermann’s
function. However, since the disjoint sets always contain consecutive values in B, Gabow and
Tarjan [4] propose a data structure where each call executes in constant amortized time which makes
the backward edge relaxation stage run in O(n) steps. Finally, the algorithm for finding the starting
times performs min(n,

⌈
n
m

⌉
p) calls to the forward and backward edge relaxation stages which

results in a running time complexity of O(min(1, p
m )n2). J

Observe that the running time complexity O(min(1, p
m )n2) is strongly polynomial in all param-

eters. While the presence of the variable p might suggest pseudo-polynomiality, the term min(1, p
m )

is always bounded by a constant. In the particular case where p is considered to be a small bounded
value, the resulting complexity O(n2

m ) decreases as the number of machines m increases.
The algorithm has better performance in some special cases of interest. For instance, when p = 1,

a shortest path cannot have nested backward edges as stated in Lemma 12. Neither can the path have
disjoint backward edges. To wit, suppose that (a, b) and (c, d) are two disjoint backward edges such
that (a, b) occurs before (c, d) on a shortest path. If b ≥ c then the edge (d, a) is an equivalent or
shorter path. If b < c then the forward edges need to pass by node c before reaching d creating
a loop. With shortest paths including only one backward edge, the algorithm converges after one
iteration.

We showed that the algorithm computes in polynomial time a shortest path and thus a valid
schedule. We show that it also detects infeasibility in polynomial time. By Lemma 13, if there is
no negative cycle, a shortest path has at most min(n,

⌈
n
m

⌉
p) alternations between backward and

forward edges. By Yen’s theorem, if there are no negative cycles, the Bellman-Ford algorithm will
converge after min(n,

⌈
n
m

⌉
p) iterations. On the other hand, if the graph has a negative cycle, the

Bellman-Ford never converges since the cost function tends to minus infinity. To detect infeasibility,
the algorithm first iterates min(n,

⌈
n
m

⌉
p) times. If the graph has no negative cycles, the algorithm

should have converged. To test if it did converge, the algorithm iterates one more time. If the distance
vector has changed, then the algorithm has not converged and will never do. The algorithm detected
infeasibility in exactly min(n,

⌈
n
m

⌉
p) + 1 iterations which is strongly polynomial.

We now characterize the solution returned by the algorithm and prove that it minimizes both the
sum of the completion times and the makespan.

I Theorem 16. The solution returned by the algorithm for finding the starting times minimizes the
sum of the completion times.

Proof. Minimizing the sum of the completion times is equivalent to minimizing the sum of the
starting times. We recall that xt is the number of jobs starting at time t. Minimizing the sum of the
starting times is equivalent to minimizing

∑umax−1
t=rmin

txt. Performing the change of variables from xt
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to yt+1 − yt leads to a telescopic sum that we solve in (16) and simplify in (17).

umax−1∑
t=rmin

t(yt+1 − yt) = (umax − 1)yumax − rminyrmin −
umax−1∑

t=rmin+1

yt (16)

= rmin(yumax − yrmin) +
umax−1∑

t=rmin+1

(yumax − yt) (17)

The difference yumax − yrmin is equal to n for all solutions since this is the number of jobs
executed between the beginning and the end of the schedule. The first term to optimize is therefore
a constant and can be ignored leaving only the expression

∑umax−1
t=rmin+1(yumax − yt) to minimize or∑umax−1

t=rmin+1(yt − yumax) to maximize.
Let (a1, a2), (a2, a3), . . . , (ak−1, ak) with a1 = umax and ak = t be the edges on the shortest

path from umax to t with total weight δ(umax, t). By substituting the inequalities (7)-(9), we obtain
this relation.

δ(umax, t) =
k−1∑
i=1

w(ai, ai+1) ≥
k−1∑
i=1

yai+1 − yai = yt − yumax (18)

By setting yumax = 0 and yt = δ(umax, t), we maximize the difference yt−yumax up to reaching
the equality. Since we maximize the difference for all values t, this maximizes

∑umax−1
t=rmin

(yt−yumax)
which is equivalent to minimizing

∑umax−1
t=rmin

txt. J

I Theorem 17. The algorithm for finding the starting times minimizes the makespan.

Proof. Suppose the algorithm makes the latest job start at time m. We have −
∑umax−1

t=m xt =
ym − yumax < 0. A schedule with smaller makespan would have ym − yumax = 0 which means this
quantity would be greater than the one produced by the algorithm. However, following the argument
in Theorem 16, the inequality (18) is maximized up to equality. Therefore, a schedule with a smaller
makespan violates (7)-(9). J

6 Conclusion

We gave an algorithm which substantially improves over the previous best known ones for the prob-
lem of makespan and completion times minimization for multi-machine scheduling with tasks of
equal length. We observed that the running time complexity depends on the relative sizes of m and
p. An open question is to show whether this relationship is tight or whether there exists a better
complexity in terms of n, m, and p.
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